Algebric Multigrid using Energy-Minimization in Parallel Setting

Andrey Prokopenko

Jeremie Gaidamour, Jonathan Hu, Ray Tuminaro

International Conference On Preconditioning Techniques For Scientific And Industrial Applications
21 June 2013

Sandia National Laboratories

Outline

- Introduction
- Energy-minimization based AMG
 - Motivations
 - Algorithm
- Parallel implementation
- Setup amortization
- Conclusion

AMG

- Iterative method for solving linear equations
- Commonly used as a preconditioner
- Idea: capture error at multiple resolutions using grid transfer operator:
 - Smoothing damps the oscillatory error (high energy)
 - Coarse grid correction reduces the smooth error (low energy)

Prolongator requirements

Few desired properties

- preservation of null space: the span of basis functions on each coarse level should contain zero energy modes
- minimization of energy: basis functions on the coarse levels should have as small energy as possible
- **bounded intersection:** the supports of the basis functions on the coarse levels should overlap as little as possible.

Smoothed Aggregation

SA prolongator is constructed in a few steps

aggregates

- Construct aggregates
 - Select a set of root nodes
 - Group unknowns into aggregates
- Construct tentative prolongator and coarse nullspace
 - Restrict fine nullspace onto aggregates
 - Do QR decomposition We satisfy $P_{tent}B_c=B$
- Decrease energy of P_{tent} by smoothing $P = (I \omega D^{-1}A)P_{tent}$ May not satisfy $P_{SA}B_c = B$

Energy minimization

Energy minimization

Energy minimization is a general framework.

Idea: construct the prolongator P by minimizing the energy of each column P_k while enforcing constraints.

Find P:

$$P = \operatorname{argmin} \sum ||P_k||_{\chi}$$

subject to

- specified sparsity pattern;
- nullspace preservation.

Advantages:

- Flexibility (input):
 - accept any sparsity pattern (arbitrary basis function support)
 - enforce constraints: important modes requiring accurate interpolation
 - choice of norm for minimization and search space
- Robustness

Constraint matrix

Sparsity pattern

- inputs
- B, B_c fine and coarse mode(s) requiring accurate interpolation Preservation of the nullspace: for instance $\,{
 m P1}=1\,$

$$N = \begin{bmatrix} * & * \\ * & 0 \\ * & * \\ 0 & * \end{bmatrix} \qquad PB_c = B \Leftrightarrow \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \\ p_{31} & p_{32} \\ p_{41} & p_{42} \end{bmatrix} \begin{bmatrix} b_{11}^c \\ b_{21}^c \\ b_{31} \\ b_{41} \end{bmatrix}$$

• Representation of the constraints in the algorithm:

$$XP = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ b_{11}^{c} & 0 & 0 & 0 & b_{21}^{c} & 0 & 0 & 0 \\ 0 & b_{11}^{c} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & b_{11}^{c} & 0 & 0 & 0 & 0 & b_{21}^{c} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & b_{21}^{c} \end{bmatrix} \begin{bmatrix} p_{11} \\ p_{21} \\ p_{31} \\ p_{41} \\ p_{12} \\ p_{22} \\ p_{32} \\ p_{42} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ b_{11} \\ b_{21} \\ b_{31} \\ b_{41} \end{bmatrix}$$

Constraint matrix

Two nullspace vectors:

$$P\begin{bmatrix} b_{11}^c & b_{12}^c \\ b_{21}^c & b_{22}^c \end{bmatrix} = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \\ b_{41} & b_{42} \end{bmatrix}$$

$$\begin{bmatrix} b_{11}^c & 0 & 0 & b_{21}^c & 0 & 0 \\ 0 & b_{11}^c & 0 & 0 & 0 & 0 \\ 0 & 0 & b_{11}^c & 0 & b_{21}^c & 0 \\ 0 & 0 & 0 & 0 & 0 & b_{21}^c \\ b_{12}^c & 0 & 0 & b_{22}^c & 0 & 0 \\ 0 & 0 & b_{12}^c & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & b_{22}^c & 0 \\ 0 & 0 & 0 & 0 & 0 & b_{22}^c & 0 \\ 0 & 0 & 0 & 0 & 0 & b_{22}^c & 0 \\ 0 & 0 & 0 & 0 & 0 & b_{22}^c & 0 \\ \end{bmatrix} \begin{bmatrix} p_{11} \\ p_{21} \\ p_{21} \\ p_{31} \\ p_{12} \\ p_{32} \\ p_{42} \end{bmatrix} = \begin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \\ b_{12} \\ b_{22} \\ b_{32} \\ b_{42} \end{bmatrix}$$

Energy-minimization algorithm

Find P:

$$P = \operatorname{argmin} \sum ||P_k||_{\chi}$$

subject to

- specified sparsity pattern;
- nullspace preservation.

Solve AP = 0 in a constrained Krylov space

- Definition of energy $\|\cdot\|_{\chi}$ depends on Krylov method
 - A for CG
 - A^TA for GMRES

Energy minimization algorithm

```
Construct aggregates
\mathcal{N} = |A||P^{(0)}|

    Select sparsity pattern

D = diag(A)
                                                                     ▷ Diagonal preconditioner
R = -AP^{(0)}
                                                                                   ▷ Initial residual
R = \mathbf{enforce}(R, \mathcal{N})
                                                                        \triangleright Enforce sparsity on R
R = \mathbf{project}(R, X)
                                                                               \triangleright Enforce RB_c = \mathbf{0}
for i to iter do
     Z = D^{-1}R
    \gamma = \langle R, Z \rangle_F
    if i is 1 then
         Y = Z
     else
         \beta = \gamma/\gamma_{old};
         Y = Z + \beta Y

    New search direction

     end if
    \gamma_{old} = \gamma
    Y_A = AY
    Y_A = \mathbf{enforce}(Y_A, \mathcal{N})
                                                                       \triangleright Enforce sparsity on Y_A
    Y_A = \mathbf{project}(Y_A, B_c)
                                                                             \triangleright Enforce Y_AB_c=\mathbf{0}
    \alpha = \gamma / \langle Y, Y_A \rangle_F
     P^{(i)} = P^{(i-1)} + \alpha Y
                                                                           ▶ Update prolongator
```


 $\, \triangleright \, \text{Update residual} \,$

 $R = R - \alpha Y_A$

Comparison with Smoothed Aggregation

SA: 6 DOFs/node

• Energy Minimization: 3 DOFs/node, 6 nullspace vectors

Tab. : Iteration count and *complexity* (lower complexity = faster run time) for increasing mesh sizes and stretch factors.

Mesh	$\epsilon = 1$				$\epsilon = 10$			$\epsilon = 100$				
	SA		Emin		SA		Emin		SA		Emin	
10^{3}	6	1.30	7	1.07	8	2.81	8	1.22	9	3.21	8	1.24
15^3	8	1.19	9	1.05	10	2.32	10	1.15	12	2.54	12	1.16
20^{3}	8	1.24	9	1.06	10	2.59	9	1.18	13	3.05	10	1.20
25^{3}	9	1.26	8	1.07	11	2.76	9	1.20	14	3.04	10	1.20
30^{3}	10	1.22	11	1.05	12	2.52	12	1.17	15	3.06	13	1.19
35^{3}	10	1.24	10	1.06	12	2.66	12	1.18	16	3.03	13	1.19
40^{3}	10	1.26	9	1.06	12	2.77	12	1.19	16	3.21	11	1.21

3.85x

complexity:
$$\frac{\sum_{i} nnz(A_{i})}{nnz(A)}$$

Parallel implementation

Energy minimization algorithm

```
Construct aggregates
\mathcal{N} = |A||P^{(0)}|

    Select sparsity pattern

D = diag(A)
                                                                     ▷ Diagonal preconditioner
R = -AP^{(0)}
                                                                                   ▷ Initial residual
R = \mathbf{enforce}(R, \mathcal{N})
                                                                        \triangleright Enforce sparsity on R
R = \mathbf{project}(R, X)
                                                                               \triangleright Enforce RB_c = \mathbf{0}
for i to iter do
     Z = D^{-1}R
    \gamma = \langle R, Z \rangle_F
    if i is 1 then
         Y = Z
     else
         \beta = \gamma/\gamma_{old};
         Y = Z + \beta Y

    New search direction

     end if
    \gamma_{old} = \gamma
    Y_A = AY
    Y_A = \mathbf{enforce}(Y_A, \mathcal{N})
                                                                       \triangleright Enforce sparsity on Y_A
    Y_A = \mathbf{project}(Y_A, B_c)
                                                                             \triangleright Enforce Y_AB_c=\mathbf{0}
    \alpha = \gamma / \langle Y, Y_A \rangle_F
     P^{(i)} = P^{(i-1)} + \alpha Y
                                                                           ▶ Update prolongator
```


▶ Update residual

 $R = R - \alpha Y_A$

Energy minimization algorithm

```
Construct aggregates
\mathcal{N} = |A||P^{(0)}|

    Select sparsity pattern

D = diag(A)
                                                                    ▶ Diagonal preconditioner
R = -AP^{(0)}
                                                                                 ▶ Initial residual
R = \mathbf{enforce}(R, \mathcal{N})
                                                                       \triangleright Enforce sparsity on R
R = \mathbf{project}(R, X)
                                                                              \triangleright Enforce RB_c = \mathbf{0}
for i to iter do
     Z = D^{-1}R
    \gamma = \langle R, Z \rangle_F
    if i is 1 then
         Y = Z
     else
         \beta = \gamma/\gamma_{old};
         Y = Z + \beta Y

    New search direction

     end if
    \gamma_{old} = \gamma
    Y_A = AY
    Y_A = \mathbf{enforce}(Y_A, \mathcal{N})
                                                                      \triangleright Enforce sparsity on Y_A
    Y_A = \mathbf{project}(Y_A, B_c)
                                                                             \triangleright Enforce Y_AB_c=\mathbf{0}
    \alpha = \gamma / \langle Y, Y_A \rangle_F
     P^{(i)} = P^{(i-1)} + \alpha Y
                                                                          ▶ Update prolongator
     R = R - \alpha Y_A
                                                                               ▶ Update residual
```


Parallel aggregation

Two choices: coupled and uncoupled aggregation

- Uncoupled aggregation aggregates only inside a subdomain
- Coupled aggregation allows aggregates to cross subdomain boundary
- Coupled aggregation is more expensive, but has convergence similar to the serial case

Constraints in parallel

Let P have the following pattern and nullspace consist of two vectors

$$P\begin{bmatrix}b_{11}^c & b_{12}^c \\ b_{21}^c & b_{22}^c\end{bmatrix} = \begin{bmatrix}b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \\ b_{41} & b_{42}\end{bmatrix} \qquad P = \begin{bmatrix}p_{11} & p_{12} \\ p_{21} & 0 \\ p_{31} & p_{32} \\ 0 & p_{41}\end{bmatrix}$$

$$P = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & 0 \\ p_{31} & p_{32} \\ 0 & p_{41} \end{bmatrix}$$

$$\begin{bmatrix} p_{11} \\ p_{21} \\ p_{31} \\ p_{12} \\ p_{32} \\ p_{42} \end{bmatrix} = \begin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \\ b_{41} \\ b_{12} \\ b_{22} \\ b_{32} \\ b_{42} \end{bmatrix}$$

$$=\begin{bmatrix}b_{31}\\b_{41}\\b_{12}\\b_{22}\\b_{32}\\b_{42}\end{bmatrix}\begin{bmatrix}b_{11}^c&b_{21}^c&0&0&0&0\\b_{12}^c&b_{22}^c&0&0&0&0\\0&0&b_{11}^c&0&0&0\\0&0&0&b_{12}^c&0&0&0\\0&0&0&b_{12}^c&b_{21}^c&0\\0&0&0&0&0&b_{21}^c\\0&0&0&0&0&b_{22}^c\end{bmatrix}$$

$$\begin{bmatrix} p_{11} \\ p_{12} \\ p_{21} \\ p_{32} \\ p_{41} \\ p_{42} \end{bmatrix} = \begin{bmatrix} b_{11} \\ b_{12} \\ b_{21} \\ b_{22} \\ b_{31} \\ b_{32} \\ b_{41} \\ b_{42} \end{bmatrix}$$

Constraints in parallel

What does each block correspond to?

Consider a row of P with three nonzeros

Block of the constraint corresponding to the row

Energy minimization algorithm (updated)

```
Construct aggregates
\mathcal{N} = |A||P^{(0)}|
                                                                     ▶ Select sparsity pattern
Import ghost components of nullspace vectors
D = diag(A)
                                                                   ▶ Diagonal preconditioner
R = -AP^{(0)}
                                                                                ▶ Initial residual
R = \mathbf{enforce}(R, \mathcal{N})
                                                                      \triangleright Enforce sparsity on R
R = \mathbf{project}(R, X)
                                                                             \triangleright Enforce RB_c = \mathbf{0}
for i to iter do
    Z = D^{-1}R
    \gamma = \langle R, Z \rangle_F
    if i is 1 then
         Y = Z
    else
         \beta = \gamma/\gamma_{old};
         Y = Z + \beta Y

    New search direction

    end if
    \gamma_{old} = \gamma
    Y_A = AY
    Y_A = \mathbf{enforce}(Y_A, \mathcal{N})
                                                                    \triangleright Enforce sparsity on Y_A
    Y_A = \mathbf{project}(Y_A, B_c)
                                                                           \triangleright Enforce Y_AB_c=\mathbf{0}
    \alpha = \gamma / \langle Y, Y_A \rangle_F
    P^{(i)} = P^{(i-1)} + \alpha Y
                                                                         ▶ Update prolongator
```

 $R = R - \alpha Y_A$

▶ Update residual

MueLu

- Future package of the Trilinos project (to replace ML)
 - Massively parallel
 - Multicore and GPU aware
 - Templated types for mixed precision calculation (32-bit 64-bit) and type complex
- Objective is to solve problem with billions of DOF on 100Ks of cores...
- Leverage the Trilinos software stack:

Currently in development...

Numerical results - Laplace 3D

- Laplace 3D, 7 point stencil
- Energy minimization
 - 2 CG iterations
 - Initial guess: tentative prolongator
 - Sparsity pattern: same as SA

Numerical results - Elasticity 3D

- Elasticity 3D, Poisson ratio 0.25
- Energy minimization
 - 2 CG iterations
 - Initial guess: tentative prolongator
 - Sparsity pattern: same as SA

Setup amortization

Setup amortization: reuse

- Emin setup may be expensive (several times that of SA)
- Typically, we need multigrid for each linear iteration of Newton, therefore it is reasonable to assume that the system does not change too much
- Many components of the setup phase can be reused
 - Initial prolongator
 - Sparsity patterns (assuming no filtering)
 - Matrix graphs (assuming fixed mesh)

Strategies for a sequence of systems

- No reuse: construct multigrid anew for each iteration
- Simple reuse: construct multigrid only for the first iteration, and then use the same preconditioner for all iteration
- **Fast reuse**: construct multigrid with multiple iterations on the first step, and use fewer iterations for consecutive step, reusing constructed prolongators and graphs

Numerical example: icesheet model

System of two coupled non-linear PDEs

$$\begin{cases}
-\nabla \cdot (2\mu \dot{\boldsymbol{\epsilon}}_1) &= -\rho g \frac{\partial s}{\partial x}, \\
-\nabla \cdot (2\mu \dot{\boldsymbol{\epsilon}}_2) &= -\rho g \frac{\partial s}{\partial y}
\end{cases}$$

with Glen's law viscosity

$$\mu = \frac{1}{2} A^{-\frac{1}{n}} \left(\dot{\epsilon}_{xx}^2 + \dot{\epsilon}_{yy}^2 + \dot{\epsilon}_{xx} \dot{\epsilon}_{yy} + \dot{\epsilon}_{xy}^2 + \dot{\epsilon}_{xz}^2 + \dot{\epsilon}_{yz}^2 + \gamma \right)^{\left(\frac{1}{2n} - \frac{1}{2}\right)}$$

 $\dot{\boldsymbol{\epsilon}}_{1}^{T} = \begin{pmatrix} 2\dot{\epsilon}_{xx} + \dot{\epsilon}_{yy}, & \dot{\epsilon}_{xy}, & \dot{\epsilon}_{xz} \end{pmatrix}$ $\dot{\boldsymbol{\epsilon}}_{2}^{T} = \begin{pmatrix} \dot{\epsilon}_{xy}, & \dot{\epsilon}_{xx} + 2\dot{\epsilon}_{yy}, & \dot{\epsilon}_{yz} \end{pmatrix}$ $\dot{\epsilon}_{ij} = \frac{1}{2} \begin{pmatrix} \frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \end{pmatrix}$

A = flow rate factor

n = Glen's law exponent = 3

 γ = regularization parameter

 β = sliding coefficient ≥ 0

Discretization: classical Galerkin FEM with structured or unstructured mesh.

Nonlinear solver: Newton's method

Numerical results: icesheet model

Step	Emin(6)	Emin(1)	Emin(6,1)
2	17	30	17
8	16	32	17
12	17	33	18
18	17	36	18
23	17	36	18
28	17	34	18

Summary

- Energy minimization AMG is flexible
- Energy minimization AMG is suitable for parallelization
 - Standard parallel operations (MxM, BLAS1) are well known
 - Constraint application could be done locally storing ghost info
- Preliminary results show promise
- There are ways to reduce setup cost

